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A dependence of Young's modulus of elasticity on open porosity in ceramics is derived from 
an open-porosity model, which in the literature, is applied to salinity conductivity and fluid 
permeability in rocks. A random distribution of grain and pore size is assumed. The relation 
developed, E(p) = Eo(1 - p)r, where Eis the modulus of elasticity of the porous ceramic, E o 
is the theoretical elastic modulus, p is the porosity and m is an exponent dependent on the 
tortuosity of the structure of the ceramic, adequately describes the dependence of the modulus 
of elasticity on porosity. The model is applied to the experimental data from several ceramics 
such as alumina, silicon nitride, silicon carbide, uranium oxide, rare-earth oxides, and 
YBa2Cu307_ s superconductor, and the value of m is obtained for each case. We have shown 
that m has a value of nearly 2 for sintered ceramics, unless sintering aids or hot pressing have 
been used during fabrication of the ceramic. Such additional procedures approximately double 
the magnitude of m. 

1. Introduction and review 
of previous work  

The dependence of the mechanical properties of 
ceramics on type, size and distribution of pores is an 
old subject of investigation. In recent years, it lost its 
importance due to an overall interest in high-strength, 
and thus, dense ceramics for both structural and 
electronics applications. A number of modern appli- 
cations, however, require knowledge of the effect of 
porosity on several physical properties of structural 
ceramics. Gas sensors [1], heat exchangers [2], and 
particulate filters I-3] are such applications. Even the 
traditional ceramics, such as construction material 
(bricks, tiles, cement, concrete blocks), are porous and 
are under scrutiny in radon emanation studies [4], 
because the radon emanation rate depends on the 
porosity of such materials. In addition, the ion- 
exchange capacity of concrete matrix used for the 
containment of radioactive waste [-5], and adsorp- 
tion/desorption of sulphur compounds in regenerative 
scrubbers used in desulphurization of coal gas [6], 
depend directly on the surface area ~ of open-pore 
channels. At the same time, the mechanical strength of 
these devices, and hence their durability, will also 
depend on the shape and size of the pores. As a result, 
the dependence of various physical parameters 
on porosity is crucial in the performance of these 
materials. 

Several formulations relating modulus of elasticity 
and total porosity have been reported in the literature. 
The semi-empirical formulae of Duckworth [7], 
Spriggs [8], and McKenzie [9], for example, have 
been used widely to fit the measured data of Young's 

modulus, E, of various ceramics. These equations are 

E(p) = Eoexp( -  bp) (1) 

E(p) = Eo{1 + Ap/[1 - (A + 1)p]} (2) 

E(p) = Eo(1 - f l p  + f 2 P  2) (3) 

where, Eo and p are Young's modulus of the pore free 
material and volume fraction of porosity, respectively. 
All other notations are adjustable parameters. At low 
porosity, these three relations lead to 

E(p) = E0(1 - flP) (4) 

Several investigations have reported agreement of 
these formulations with experimental results [10]. The 
empirical nature of these formulations, however, does 
not allow correlation between the microstructure of 
the material and its mechanical properties; hence, the 
constants have no physical significance. 

A second set of equations is proposed on the basis of 
the theory of elasticity of a continuum, in which pores 
are a second phase. Phani and Niyogi [11] derived an 
equation for the porosity dependence of the modulus 
of elasticity by assuming that the physical processes 
such as stress distribution and elongation are depend- 
ent only on total porosity; thus, the modulus of elasti- 
city depends only on the total porosity. The equation 
proposed by them is 

E(p) = Eo(1 = ap)" (5) 

where a is related to the packing density and is the 
inverse of the corresponding critical porosity, Pc [10] 
where the modulus of elasticity vanishes. This defini- 
tion of a suggests that it is always greater than 1. 
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However, fittings of curves of experimental data over a 
wide range of porosity invariably gives a = 1 [! 1, 12]. 
Thus, Equation 5 does not explain the experimental 
data accurately. In addition, because the approach 
taken by Phani and Niyogi [11] does not involve 
microstructure of the material, such as the random 
shapes of the pores and their random size distribution, 
the theory cannot be extended to more general ap- 
plications in fracture mechanics such as the depend- 
ence of fracture strength on grain and pore size. 

A similar difficulty arises when one considers pores 
as geometrically regular shapes embedded in a con- 
tinuum matrix. The method followed by Ishai and 
Cohen [13] is representative of this approach. They 
assume a cubic pore and derive the relation 

E(p) = Eo(1 - p2/3) (6) 

Bert [14] critically reviewed this type of approach 
and concluded that the equations derived.by taking 
regular shapes for the pores have limited application. 

The difficulties encountered in the approaches 
summarized above reveal a need for a model that 
will explain the porosity dependence of mechanical 
and fracture properties of ceramics, and predict 
microstructure-property relationships by retaining 
the random structure of ceramics. Such a model 
should be based on microscopic details of the struc- 
ture of ceramics, i.e. the irregular shapes and sizes of 
the pores and their random distribution. Such a model 
is proposed in this paper. It is a modification of an 
earlier model proposed by Wong et al. [15] to explain 
charge and mass flow through pores in rocks. In its 
first application, it is applied to study "the porosity 
dependence of the modulus of elasticity. In subsequent 
publications, its applications will be extended to the 
study of the fracture and thermophysical properties of 
ceramics. 

To develop such a model, certain observations are 
necessary. The agreement of Equation 5 with the 
experimental data for a = 1 suggests that the modulus 
of elasticity does not vanish unless p = 1, or porosity 
is 100%. This means it is possible to fabricate ceramics 
with a continuous material network with a very high 
porosity, e.g. cellular ceramics, in which porosity is as 
high as 93% [16]. Similar to this continuous material 
network, it is found that the pores are also connected 
in continuous channels, even at low porosity. This has 
been observed in the study of electrolyte conductivity 
through open-pore channels of ceramics, where con- 
ductivity is directly proportional to the square of 
the porosity of the material (Archie's law [-17]). In 
a related study, fluid permeability through the open- 
pore channels is found to be proportional to the cube 
of the porosity (Kozeny Equation [-18]). Both of these 
observations imply that conductivity and permeabil- 
ffy are zero when the porosity is zero. Brouers and 
Ramsamugh El9] confirmed this in the case of alu- 
mina ceramics by studying both Archie's law and the 
Kozeny equation over a wide range of porosity. Drory 
and Glaeser [-20], Yen and Coble [-21], and Gupta 
[22] attempted studies of the kinetics of pore closure, 
especially in the cylindrical shape, and they show that 
pore closure results only in the final stage of sintering. 

This implies that the ope n pores exist until the final 
stages of sintering; beyond that the open-pore fraction 
will depend on the extent of sintering. The data on 
UOz [23], magnesia and zirconia [24] reveal open 
pores even at a very low porosity. Thus, it is justified 
to assume that open pores exist over a wide range of 
porosity in ceramics, unless they are fabricated with 
special techniques, such as the use of pore formers. In 
addition, these studies also find that the fraction of the 
closed-pore volume is very small compared to the 
open-pore volume, except at very low porosity. The 
model proposed here is based on these observations. 
We assume that open pores exist in ceramics even at 
low porosity. We also assume that pore distribution, 
size, and shape are random. The simulation of the 
model based on these observations is presented and 
porosity dependence of the modulus of elasticity is 
derived. Subsequently, the model is applied to the 
experimental data and conclusions are drawn on its 
applicability. 

2. Open-pore model of ceramic 
structures 

As stated earlier, this model is based on an earlier o n e  
proposed by Wong et al. [15] to explain the electro- 
lyte conductivity and fluid permeability through pore 
channels in rocks. In rocks, it is found that both 
electrolyte conductivity and fluid permeability exist at 
low porosity because open-pore channels are present 
at that porosity. The origin of the open pores respon- 
sible for the flow of fluids is attributed to the mode of 
formation of rocks at high pressure [-15]. When rocks 
are formed, the packing of particles (grains) starts with 
a high initial porosity. In the initial and intermediate 
stages of consolidation, the cross section of a pore 
channel is reduced by the external pressure. Wong 
et al. claim that the probability of a channel becoming 
completely blocked by the pressure is small, because 
as the consolidation of the wall of the channel under 
pressure reduces local stress, it strengthens the wall, 
and resists further deformation. These arguments may 
very Well apply to ceramics too, because the process of 
development of a ceramic material is very similar to 
that of rock formation. Therefore, the model proposed 
by Wong et al. El5] is adopted in this work. 

We assume that a ceramic structure is a three- 
dimensional, intertwined, continuous network of 
material chains and open-pore channels. The chains 
are formed by connecting grains, each grain represent- 
ing a nearly crystalline structure. Closed pores, if 
present, are few in proportion to the total porosity; 
hence, their effects are negligible. We also assume 
a random distribution of the grains and the pore 
channels and retain this random structure, unlike 
the treatments presented in the literature [11, 25J. To 
evaluate the effect of porosity on the modulus of 
elasticity, we propose to simulate a structure with 
random cross sections of material chains and pore 
channels. To achieve this, we begin with a cubic 
structure of packed cylinders of negligible initial por- 
osity. The cross-sectional radius of each cylinder is 
equal to the maximum grain size in sintered ceramics. 
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In a given direction, the cylinders are connected in 
series to form a material chain. A one-dimensional 
analogue of such a model is illustrated in Fig. la. We 
also assume in the first approximation that each 
cylinder (grain) is crystalline, so that a basic lattice- 
dynamical model of crystalline structure can be used 
to calculate mechanical and thermal properties. This 
means that each cylinder consists of a regular array of 
atoms connected by elastic springs representing bonds 
between the atoms. The number of springs parallel to 
the length of an individual cylinder is proportional to 
the area of the cylinder cross-section. Thus, when a 
cylinder is stretched, each spring is elongated and the 
net extension of the cylinder is a collective effect of the 
extension of these parallel springs. 

To simulate the random distribution of the material 
with non-uniform cross-section of material chains, 
cylinders are chosen at random and their cross- 
sections are reduced randomly. Repeated random re- 
ductions will simulate a material chain of random 
cross-section. At the same time, it will also simulate 
connected pore structures between two material 
chains. A one dimensional illustration of three succes- 
sive reductions is presented in Fig. lb-d .  As seen in 
Fig. ld, the simulation also leads to coalescence of the 
channels in the transverse direction. In three dimen- 
sions, such a model provides material chains connec- 
ted intricately in all directions. In fact, the material 
chain model is an exact replica of the open-pore 
channel of Wong et al. [15]. 
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Flgure l One dimensional simulation of material channels. 
(a) Uncontracted structures, (b) radii of the cylinders are reduced 
by a factor of x, (c) the reduction is repeated choosing cylinders 
again at random., Note that same cylinder may be chosen and in 
that case the radius is reduced by a factor x 2, and (d) third 
simulation presents a more realistic picture of ceramic structures. 
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For simplicity, let us assume that there are N 
cylinders, all of them initially identical, as in Fig. la. 
An ith cylinder has a radius rs and consists of ns 
parallel springs with a net spring constant of the 
cylinder being ks, which is the sum of spring constants 
of individual springs. We reduce the radius by a fixed 
factor x, where x < 1. Thus, rs changes to xr~; hence n~ 
reduces to  xZni.  This yields 

k s OC x2r2~ (10) 

This shrinking procedure can be repeated to achieve 
desired porosity by reducing the radius of the cylin- 
ders, in turn, reducing the number of springs (ni) and 
consequently ks. Because the modulus of elasticity Es 
of the ith spring is proportional to ki, this procedure 
will also reduce the modulus proportionately. Thus, 
with n reductions, the modulus of elasticity, E~, is 
reduced to xZ"Es. 

The probability 
shrinking n times is 

O(n) = [ M ! / ( M  

O(n) of any particular cylinder 
given by the binomial distribution 

- n)!n!](1/N)"[(N - 1)/U] u - "  
(11) 

where M is the total number of reductions performed. 
The average spring constant of the cylinder after M 
reductions will be 

kav = <ki> 

M 
= k o ~ xZn~(n )  

n=O 

= koE(N + x 2 - 1)/N] M (12) 

where ( . . . )  denotes the average, and ko is the spring 
constant of the material without pores. 

Although the problem requires computer simu- 
lations in three dimensions, it has an exact analytical 
solution in one dimension, which also gives us some 
physical insight into the problem. Therefore, we 
obtain an analytical solution in One dimension first. 
Because the cylinders are in series, the true spring 
constant, k, is different from its average and is given by 

k - 1  = N < k : ~ l )  
M 

= N k o  ~ ~ x-~"O(n) 
n = 0  

= g k o  t [ ( N  + x -2 - 1)/N] u 

From Equations 12 and 13, one can write 

l n ( k - ~ / N k o  ~) ln[1 ~- (X - 2  - -  1)/N] 

ln(kav/ko) l n [1  q - ( X  2 --  1 ) /N]  

Because N is a large number, we have 

ln[1 + (x -2 - 1)/N] 

ln[1 + (x 2 - 1 ) / N ]  
= ( x -  - 1)/(x 2 - 1 )  

(13) 

(I4) 

- . ( x -  2) = - m 

Thus 
l n ( k - 1 / N k  o l )  = ln(kav/ko)-~ (15a) 

or  
( k - ~ / N k o  ~) = (k~/ko) -m (15b) 

or  

k = (1/N)ko(kav/ko)" (15c) 



Because ko is a material property independent of 
porosity, one can write 

k oc (kav) m (16) 

We also note that the average volume ( V )  of a 
cylinder of length, l, is 

<V> = nl(rZi> 

= ~Ir 2 ~ x2"CI)(n) 
n=O 

= Vo[(N + x 2 - 1)/N] M (17) 

where V o is the initial volume of a cylinder or the 
maximum volume of a grain in the final ceramic 
structure. Also 

N ( V )  = volume of the material 

= NVo(1 - p) (18) 

From Equations 17 and 18 we have 

[(N + x 2 - 1)/N] M oc (1 - p) (19) 

Therefore, from Equation 13, we have 

kay oc ( l -  p) (20) 

Combining Equations 16 and 20, we have 

k oc ( 1 -  p)m (21) 

Because the modulus of elasticity is proportional to 
k, we have 

E(p) = Eo(1 - p)m (22) 

where E o is the modulus of elasticity of the pore-free 
material .  Equation 22 gives the porosity dependence 
of the modulus of elasticity for ceramics in one dimen- 
sion. This model can be generalized to higher dimen- 
sions only numerically, and, in our case, may simply 
be adopted from Wong et al. [15]. The value ofm in a 
three-dimensional model, howeVer, differs from that in 
Equation 14 and is derived exactly in the thermo- 
dynamic limit in the Appendix. The only difference 
between the model of Wong et al. [15] and the present 
model is that they applied it to pore channels and our 
model is applied to material chains. Thus, we obtain 
our porosity dependence by replacing p by (1 - p) in 
their model, as is evident in the one-dimensional 

TAB L E I  Exponents m obtained by fitting Equation 22 with various 

description given above. They tabulated the sample 
results for various values o fx  in their article; hence, we 
have not reproduced them here. Extensive numerical 
calculations lead to the following inferences. 

1. x is a measure of the tortuosity (skewness) in the 
material. The smaller x leads to wider distribution of 
the cross-sections in the chains; thus, the disorder in 
the size distribution is generated by a proper choice 
of  X. 

2. As x decreases, m increases. This implies that 
skewness, as a measure of the disorder, is higher for 
higher values of m. 

3. The properties of the entire structure are simply 
related to the statistical distribution of the individual 
cylinders, regardless of how they are connected in 
detail. 

In the next section, we shall apply this model to 
various ceramics and use the inferences presented 
above to obtain an insight into the effect of fabrication 
method on microstructure. 

3. Applications of the model 
Table I is a summary of the exponents m obtained 
from various fittings of Equation 22 with experimental 
results by linear regression analysis. The exponents 
from these fittings are quoted in the table with appro- 
priate references. For  fittings done for the first time in 
the present work, the results are also shown in Figs 
2-4. It was observed that the value of the exponent is 
approximately 2 for materials fabricated without 
sintering aids, or hot pressed. In other cases, much 
higher values are observed. 

The exponent m for ~ alumina [26], fabricated 
without any sintering aid, with data in the high- 
porosity region (0.22-0.43) is 2.14. Rare-earth oxide 
ceramics of yttrium, holmium, dysprosium and 
erbium [27-29] have been studied at very low poros- 
ity. Again no sintering aids were added during fabric- 
ation. In Fig. 2, the values of the modulus have been 
plotted as a function of porosity. The least square 
straight line fits of Equation 22 to the data results in 
slopes of m ~ 2. It has been shown [29] that there was 
very little difference between open and total porosity, 
implying a negligibly small fraction of closed pores. 

experimental results by linear regression analysis 

Material Porosity m References 
range 

Data Fitting Comments 

c~-alumina 0.22-0.43 2.14 [26] 
[3-alumina 0.02-0.41 4.12 [34] 
Y203 0.03-0.19 2.02 [29] 
Er20 3 0.11-0.3 2.14 [29] 
Dy20 s 0.07-0.38 2.47 [29] 
HozO 3 0.01-0.18 2.4 [29] 
SiC 0.02-0.16 3.8 [32] 
Si3N 4 0.2-0.2 2.58 [40-43] 
Si3N 4 + MgO 0.08-0.45 5.48 [33] 
SiaN 4 + CeO 2 0.02-0.38 4.2 [33] 
SiaN 4 + Y203 + SiO 2 0-0.12 3.81 [33] 
UO2 0.02-0.06 2.27 [31] 
YBa2CuaO7_ ~ 0.07-0.301 2.05 [30] 

11 
11 
this work 
this work 
this work 
this work 
this work 
11 
this work 
this work 

31 
this work 

eonsistent with conductivity data 
Sodium aluminate as a glassy phase 
pure oxide 
pure oxide 
pure oxide 
pure oxide 
hot pressed 
l~eaction bonded 
Hot pressed, sintering aid used 
sintefing aid used 
sintering aid used 
pure oxide 
oxide mixture 
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Figure 2 C o m p a r i s o n  of  Y o u n g ' s  m o d u l i  of  r a r e - e a r t h  oxide  

ceramics with Equation 21. 
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Figure 3 Porosity dependence of elastic moduli of hot-pressed 
silicon carbide and silicon nitride specimens. 

This justifies our use of an open-porosity model in this 
case, even at low porosity. 

The case is similar when one compares values from 
Equation 22 with the data of Singh et al. [30] on the 
superconductor YBa2Cu307.~. Fig. 4 shows the agree- 
ment of Equation 22 with the experimental results. 
The exponent is 2.43~ This shows that the behaviour of 
the superconductor is similar to the other ceramics 
presented above in its porosity dependence of the 
modulus of elasticity. The same is the case with the 
data on UO2 measured by Forlano et al. [31]. They 
measured density using Archimedes principle, which 
gives only open porosity. The corresponding exponent 
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Figure 4 L o g a r i t h m s  of  relat ive per  cent  dens i ty  a n d  Y o u n g ' s  

m o d u l u s  for  the  s u p e r c o n d u c t o r .  Theore t i ca l  dens i ty  = 6.3 g c m -  3 

a n d  E o = 110.8 G P a .  

is found to be 2.27 (again close to 2), consistent with 
the behaviour of other materials cited above. 

The situation is quite different when the material is 
hot-pressed. In this case, external pressure leads to 
accelerated densification, implying a lower value of x 
in our model and consequently, a higher value of m. 
Silicon carbide [32] is a good example of this. The 
value of m in the case of hot-pressed silicon carbide is 
found to be 3.38, considerably higher than the expo- 
nent found in the materials discussed above. Similarly 
during fabrication, the use of sintering aids leads to 
accelerated densification. This is evident from the data 
on silicon nitride doped with MgO, CeO 2 and Y203 
+ SiO2 [33]. Here, the exponents are 5.48, 4.2 and 

3.81, respectively. These values of m are much higher 
than the 2.58 obtained in the case of undoped, re- 
action-bonded silicon nitride [34-37]. The agreement 
of Equation 22 with the data on these materials with 
higher values of rn is shown in Fig. 3. 

Finally, we consider the case of [3 alumina. Evans 
et al. [38], who measured its modulus of elasticity, and 
Phani and Niyogi [11], who fitted the data using 
empirical Equation 6, obtained a value of 4.12 for m, 
which is considerably higher than that obtained for 
alumina. The likely reason for this high value of m is 
a glassy phase formed during the sintering process. 
Evans et al. observed that during sintering of 13 alu- 
mina, sodium aluminate was formed at the inter- 
mediate stage, and 13' alumina was a result of reaction 
between ~ alumina and this phase. It is possible that 
sodium aluminate also acted as a glassy phase and 
helped densification; this is reflected in a larger value 
of m, as discussed. Thus, in  this respect, 13 alumina 
behaves like doped silicon nitride and one obtains a 
higher value of m. 

There is a similarity between Equation 22 for the 
modulus of elasticity and Archie's law of electrolyte 
conductivity. Equation 22 implies that the modulus of 
elasticity in the material chains is a power law of the 
volume fraction of the material in a porous material, 
whereas Wong et al. [15] show that the conductivity, 
a, in the pore channels is a power law of the volume 
fraction of pores given by the relation 

= crop S (23) 



where cr o is the conductivity of the electrolyte. In 
most of the materials, s is found to be equal to 2; 
hence, Equation 23 is a mathematical presentation of 
Archie's law. Brouers and Ramsamugh [19] tested this 
law in ~ alumina and found that s = 1.91, again nearly 
equal to 2. The fact that the present model applied to 
material chains and that used by Wong e t  al,  [15] for 
pore channels are identical and yield approximately 
the same exponent, implies that the overall micro- 
structure and tortuosity of material chains and the 
pore channels are similar in ceramics fabricated with- 
out sintering aids. It would be interesting to see how 
Archie's law (Equation 23) behaves in materials such 
as 13 alumina, where the glassy phase influences the 
tortuosity. 

4. D i s c u s s i o n  and  c o n c l u s i o n s  
The observations in the previous section allow us to 
draw some general conclusions. 

Porosity dependence of the modulus of elasticity 
of ceramics is a simple power law given by E ( p )  

= Eo(1 - p ) " .  For ceramics fabricated without hot- 
pressing or sintering aids, m is approximately 2, which 
is consistent with Archie's law of electrolyte con- 
ductivity through porous media. As the porosity is 
reduced by sintering aids or external pressure, its 
value increases, implying an accelerated densification. 

The behaviour reflected in these conclusions is not 
limited to ceramics, but is applicable to porous mater- 
ials in general. Phani and Mukerjee [39] showed that 
m = 1.85 in the case of porous epoxy resin, whereas a 
similar study by Hassehnan and Fulrath [40] on glass 
with spherical pores yielded an exponent of 2. Several 
investigators have studied cellular solids. The most 
comprehensive discussion is given by Ashby [16], who 
derived an exact relation for the modulus of elasticity 
as a power law of the density of geometrically regular 
cellular solids such as natural polymers, ceramic, and 
glass foams; he determined the exponent to be 2. This 
was further verified by Dam [4l] and Hagiwara [42] 
for cellular ceramics. Theoretically, Spinner e t  al.  [43] 
showed that, at zero porosity 

-d /dp(E /Eo) l v .  o = [(1 + . )  (39 -- 45g)/6 

•  13 (24) 

where g is Poisson's ratio. From Equation 22, we 
obtain 

m = - d / d p ( E / E o ) l p ~  o (25) 

For a typical Poisson's ratio, g, between 0.2 and 0.3, 
Equation 24 gives m ~ 2, confirming the findings of 
this work. In spite of this general behaviour of an 
exponent being approximately equal to 2, porous 
ceramics can behave differently, with a higher value of 
m, when a glassy phase is present or external pressure 
is applied during fabrication. In that respect, behavi- 
our of porous ceramics is very similar to that of rocks, 
where the exponent is generally 2 but may differ if 
skewness varies due to their formation under the 
pressure of overburden [25]. 

Appendix: Exact value of the exponent rn 
in the thermodynamic limit 
in three dimensions 

The shrinkage probability ~(n) given by Equation 11 
becomes a Gaussian distribution in the thermo- 
dynamic limit, i.e. as M, N, and M / N  --, oo [15]. This 
distribution is centred at 13 = ( M / N )  with a half-width 
of • 13 = 13�89 13 here is the most probable value of n. The 
most probable (mp) value of the force constant k is 
given by 

kmp = x 2 ~ k o  (A1) 

This kmp clearly differs from the average value k~, 
for finite M and N. However, in the thermodynamic 
limit, 13 becomes negligible and one maywri te  

k m p / k  0 oc k / k  o 

Using Equations A1, A2 and 12, we obtain 

l n ( k m p / k o ) / l n ( k a v / k o )  

= m 

Therefore, kmp oc kamv; hence k oc kamv 

o r  

k = ko(1 - p)m 

and 
m = l n x 2 / ( x  2 - -  1) 

(A2) 

= !n(x2~/N) 

+ l n [ 1  + (x 2 - 1)/N] M 

( l n x 2 ) / ( x  2 - -  l) 

= l n x 2 / ( x  2 - 1) 

tA3) 

(A4) 

(AS) 
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